Learning action models from plan examples using weighted MAX-SAT

نویسندگان

  • Qiang Yang
  • Kangheng Wu
  • Yunfei Jiang
چکیده

AI planning requires the definition of action models using a formal action and plan description language, such as the standard Planning Domain Definition Language (PDDL), as input. However, building action models from scratch is a difficult and time-consuming task, even for experts. In this paper, we develop an algorithm called ARMS (action-relation modelling system) for automatically discovering action models from a set of successful observed plans. Unlike the previous work in action-model learning, we do not assume complete knowledge of states in the middle of observed plans. In fact, our approach works when no or partial intermediate states are given. These example plans are obtained by an observation agent who does not know the logical encoding of the actions and the full state information between the actions. In a real world application, the cost is prohibitively high in labelling the training examples by manually annotating every state in a plan example from snapshots of an environment. To learn action models, ARMS gathers knowledge on the statistical distribution of frequent sets of actions in the example plans. It then builds a weighted propositional satisfiability (weighted MAX-SAT) problem and solves it using a MAX-SAT solver. We lay the theoretical foundations of the learning problem and evaluate the effectiveness of ARMS empirically. © 2006 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ARMS: Action-Relation Modelling System for Learning Action Models

We present a system for automatically discovering action models from a set of successful observed plans. AI planning requires the definition of an action model using a language such as PDDL as input. However, building an action model from scratch is a difficult and timeconsuming task even for experts. Unlike the previous work in action-model learning, ARMS does not assume complete knowledge of ...

متن کامل

Crowdsourced Action-Model Acquisition for Planning

AI planning techniques often require a given set of action models provided as input. Creating action models is, however, a difficult task that costs much manual effort. The problem of action-model acquisition has drawn a lot of interest from researchers in the past. Despite the success of the previous systems, they are all based on the assumption that there are enough training examples for lear...

متن کامل

Learning Action Models from Plan Examples with Incomplete Knowledge

AI planning requires the definition of an action model using a language such as PDDL as input. However, building an action model from scratch is a difficult and time-consuming task even for experts. In this paper, we develop an algorithm called ARMS for automatically discovering action models from a set of successful plan examples. Unlike the previous work in action-model learning, we do not as...

متن کامل

Learning Actions Models from Plan Examples with Incomplete Knowledge

AI planning requires the definition of an action model using a language such as PDDL as input. However, building an action model from scratch is a difficult and time-consuming task even for experts. In this paper, we develop an algorithm called ARMS for automatically discovering action models from a set of successful plan examples. Unlike the previous work in action-model learning, we do not as...

متن کامل

Learning action models for multi-agent planning

In multi-agent planning environments, action models for each agent must be given as input. However, creating such action models by hand is difficult and time-consuming, because it requires formally representing the complex relationships among different objects in the environment. The problem is compounded in multi-agent environments where agents can take more types of actions. In this paper, we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Artif. Intell.

دوره 171  شماره 

صفحات  -

تاریخ انتشار 2007